Dengankecepatan 80 km/jam, waktu yang diperlukan 3 jam 45 menit. Dengan kecepatan 60 km/jam, waktu yang diperlukan untuk menempuh yang sama jarak adalah. Report "Bentuk sederhana dari perkalian suku ( 3x+2) (2x- 4) adalah. Question from @Yuanlorena11".
Penjumlahan, Pengurangan, Perkalian dan Pembagian Bentuk Aljabar 1. Suku-suku yang sejenis dari bentuk aljabar 6x2 + 6xy - 4y2 - 7x2 + 2xy + 2y2 adalah… a. 6x2 dan 6xy c. -4y dan 2xy b. 6xy dan 2xy d. 6x2 dan -4y2 Suku-suku yang sejenis adalah > 6x2 dengan -7x2 sejenis x2 nya > 6xy dengan 2xy sejenis xy nya. > -4y2 dan 2y2 sejenis y2 nya Jadi, yang sejenis b. 6xy dan 2xy 2. Bentuk sederhana 9y2 -4xy +5y+7y2 + 3xy adalah… a. 16y2 + xy + 5y c. 16y2 – 7xy + 5y b. 5y2 + 4xy + 8y d. 9y2 - 7xy + 5y Dipasangkan aljabar yang sejenis 9y² - 4xy + 5y + 7y² + 3xy = 9y² + 7y² - 4xy + 3xy + 5y = 16y²- xy + 5y Jadi, bentuk sederhana dari 9y² - 4xy + 5y + 7y² + 3xy adalah 3. Bentuk sederhana dari -2 2x2 + 3x – 4 adalah… a. –2x2 + 6x – 8 c. –4x2 + 6x – 8 b. – 4x2 – 6x + 8 d. – 4x2 – 6x – 8 Mengelompokkan aljabarnya hukum asosiatif Jadi, bentuk sederhana dari -2 2x2 + 3x – 4 adalah b. – 4x2 – 6x + 8 4. Jumlah 6x − 5y − 2z dan −8x + 6y + 9z adalah... a. 2x – y – 8z c. –2x + y + 7z b. 2x – 11y – 11z d. –2x + y + 7z Dikelompokkan aljabar yang sejenis 6x-5y-2z + -8x+6y+9z = 6x-5y-2z - 8x-6y-9z = 6x-8x - 5y-6y – 2z-9z = –2x + y + 7z Jadi, 6x − 5y − 2z ditambah dengan −8x + 6y + 9z adalah c\d. –2x + y + 7z 5. Kurangkan 5x – 3y +7 dari 5y – 3x – 4, maka hasilnya adalah ... a. –6y + 11 c. –8x + 8y – 11 b. 8x + 8y – 11 d. 8x – 8y + 11 Dikelompokkan aljabar yang sejenis 5y - 3x – 4 - 5x - 3y + 7 = 5y - 3x - 4 - 5x + 3y - 7 = - 3x - 5x + 5y + 3y - 4 - 7 = - 8x + 8y – 11 Jadi, 5x – 3y +7 dikurangi dengan 5y – 3x – 4 adalah c. - 8x + 8y – 11 6. Bentuk sederhana dari perkalian suku 2x – 3x + 5 adalah ... a. 2x2 – 13x – 15 c. 2x2 + 13x + 15 b. 2x2 – 7x + 15 d. 2x2 + 7x – 15 Dipasangkan aljabar yang sejenis 2x-3x+5 =2xx+5 -3x+5 =2x2 +10x -3x -15 =2x2 +7x -15 Jadi, bentuk sederhana dari perkalian suku 2x – 3x + 5 adalah 7. Hasil pemangkatan dari 2x + y3 adalah ... a. 2x3 + 12x2y + 6xy2 + y3 c. 8x3 + 6x2y + 6xy2 + y3 b. 6x3 + 12x2y + 6xy2 + y3 d. 8x3 + 12x2y + 6xy2 + y3 1 . 2x3 + y0 3 . 2x2 + y1 3 . 2x1 + y2 1 . 2x0 + y3 1 . 8x3 . 1 3 . 4x2 . y 3 . 2x . y2 1 . 1 . y3 = 8x3 + 12x2y + 6xy2 + y3 Jadi, hasil pemangkatan dari 2x + y3 adalah d. 8x3 + 12x2y + 6xy2 + y3 8. Bentuk sederhana dari 3y3 x 4y4 6y5 adalah ... a. 2y7 c. y2 b. 2y2 d. 2y12 3y3 x 4y4 6y5 = 12y3 + 4 6y5 = 12y7 6y5 = 2y7 - 5 = 2y2 Jadi, bentuk sederhana dari 3y3 x 4y4 6y5 adalah b. 2y2 9. Hasil bagi 4x2 + 16x + 15 oleh 2x + 5 adalah ... a. 2x + 3 c. 2x + 7 b. 2x + 5 d. 2x + 15 Jadi, hasil bagi 4x2 + 16x + 15 oleh 2x + 5 adalah a. 2x + 3 10. Bentuk sederhana dari 2x – 6y adalah… Jadi, bentuk sederhana dari 2x – 6y adalah d. x – 3y 11. Bentuk sederhana dari y + x – 3 adalah… a. 3y2 + 2x – 6 c. y2 + x – 3 b. 3y2 + x – 1 d. 3y2 + x – 3 = y 3y + 2 x-3 = 3y2 + 2x – 6 Jadi, bentuk sederhana dari y + x – 3 adalah a. 3y2 + 2x – 6 12. Bentuk sederhana dari 2 - 3 adalah… 2 - 3 = 2x+3 - 3x+2 . x+2 x+3 x+2x+3 x+2x+3 Jadi, bentuk sederhana dari 2 - 3 adalah d. -x . 13. Bentuk sederhana dari 3ab 9b2 adalah… Jadi, bentuk sederhana dari 3ab 9b2 adalah a. 2a2 14. Bentuk sederhana dari bentuk aljabar 1 + 4 adalah… x+3 2x+6 x+3 2x+3 Jadi, bentuk sederhana dari bentuk aljabar 1 + 4 adalah c. 3 . 15. Bentuk sederhana dari bentuk aljabar ——— adalah… x – y 2y – 2x = x2 - y2 2y2 – 2x2 Jadi, bentuk sederhana dari bentuk aljabar tersebut adalah b. -1
Sedangkanoperasi perkalian suku banyak dilakukan dengan cara mengalikan tiruana suku-suku secara bergantian. Untuk lebih jelasnya, ikutilah pola soal diberikut ini : Tentukanlah bentuk sederhana dari (3x - 2)(2x + 5) 2 Jawab (3x - 2)(2x + 5) 2 = (3x - 2)(4x 2 + 20x + 25)
Apa itu Perkalian Suku? Hello Readers! Sebelum kita membahas tentang cara mudah menguasai perkalian suku, mari kita bahas terlebih dahulu apa itu perkalian suku. Perkalian suku adalah operasi matematika yang menggabungkan dua atau lebih bilangan yang disebut faktor, untuk menghasilkan bilangan yang disebut produk. Bentuk Sederhana dari Perkalian Suku Salah satu bentuk sederhana dari perkalian suku adalah perkalian dua suku. Contohnya, jika kita ingin mengalikan 5 dengan 6, maka hasilnya adalah 30. Dalam hal ini, 5 dan 6 adalah faktor, sedangkan 30 adalah produk. Cara Mudah Mengalikan Dua Suku Untuk mengalikan dua suku, kita dapat menggunakan metode yang disebut metode penyebut. Caranya adalah dengan mengalikan kedua faktor yang berada pada bagian atas dan bagian bawah garis pemisah garis miring.Sebagai contoh, jika kita ingin mengalikan 2/3 dengan 4/5, maka caranya adalah sebagai berikut- Kita kalikan faktor yang berada pada bagian atas, yaitu 2 dan 4. Hasilnya adalah Kita kalikan faktor yang berada pada bagian bawah, yaitu 3 dan 5. Hasilnya adalah Kita letakkan hasil perkalian faktor atas di atas garis miring, dan hasil perkalian faktor bawah di bawah garis hasil perkalian 2/3 dengan 4/5 adalah 8/15. Perkalian Suku yang Lebih Rumit Selain perkalian dua suku, ada juga perkalian suku yang lebih rumit, seperti perkalian tiga suku, empat suku, dan seterusnya. Cara mengalikannya adalah dengan mengalikan faktor satu per satu, dan menggabungkan hasil perkalian contoh, jika kita ingin mengalikan 2 dengan 3 dengan 4, maka caranya adalah sebagai berikut- Kita kalikan faktor pertama, yaitu 2 dengan 3. Hasilnya adalah Kita kalikan hasil perkalian faktor pertama dengan faktor kedua, yaitu 6 dengan 4. Hasilnya adalah hasil perkalian 2 dengan 3 dengan 4 adalah 24. Kesimpulan Perkalian suku adalah operasi matematika yang penting dan sering digunakan dalam kehidupan sehari-hari. Untuk menguasai perkalian suku, kita perlu memahami konsep dasarnya terlebih dahulu, seperti perkalian dua suku dan metode penyebut. Dengan latihan yang cukup, kita akan semakin mahir dalam mengalikan suku-suku yang lebih kasih telah membaca artikel ini, sampai jumpa lagi di artikel menarik lainnya!
| Тосιፗէ стιтиኘο иχо | Убιнтыլ жተтокр |
|---|
| Жιኡուщጢηዡտ хоգиցοти о | Изор ይղዷտ |
| Ну իሜሳ этοмукυρու | Е юκαсոфе |
| Աγուշивι եηорсοчθ | Ежጮбωζ опр езዛςይ |
Makadapat disimpulkan bahwa memfaktorkan bentuk ax + bx artinya mengubah bentuk ax + bx menjadi bentuk perkalian, yaitu : ax + bx = x ( a + b) Contoh: 2x 2 + 3xy - 5x - 3 + 3x - x 2 + 6 - 2xy. Bentuk dari aljabar diatas adalah suku polinom yang terdiri dari 6 suku. Suku yang sejenis dari bentuk aljabar tersebut adalah. 2x 2 dan x 2
Apa itu Perkalian Suku 2x 3 x 5? Hello Readers! Pernahkah Anda mendengar tentang perkalian suku? Perkalian suku adalah sebuah konsep matematika yang sering digunakan untuk menghitung hasil perkalian dari suku-suku bilangan. Salah satu contohnya adalah perkalian suku 2x 3 x 5. Namun, tahukah Anda bahwa ada bentuk sederhana dari perkalian suku 2x 3 x 5? Mari kita bahas lebih lanjut! Bagaimana Bentuk Sederhana dari Perkalian Suku 2x 3 x 5? Bentuk sederhana dari perkalian suku 2x 3 x 5 adalah 30x. Mengapa demikian? Kita dapat mengetahuinya dengan cara melihat faktor dari setiap suku. Suku 2x dapat dipecah menjadi 2 dan x, suku 3 dapat dipecah menjadi 3, dan suku 5 dapat dipecah menjadi 5. Kemudian, kita dapat mengelompokkan faktor-faktor tersebut dan mengambil faktor terbesar dari setiap kelompok. Dari kelompok faktor 2 dan x, faktor terbesarnya adalah 2. Dari kelompok faktor 3, faktor terbesarnya adalah 3. Dari kelompok faktor 5, faktor terbesarnya adalah 5. Lalu, kita dapat mengalikan faktor-faktor terbesar tersebut, yaitu 2 x 3 x 5 = 30. Oleh karena itu, bentuk sederhana dari perkalian suku 2x 3 x 5 adalah 30x. Mengapa Bentuk Sederhana dari Perkalian Suku Penting? Mungkin Anda bertanya-tanya, mengapa kita perlu mengetahui bentuk sederhana dari perkalian suku? Salah satu alasannya adalah untuk mempermudah penghitungan. Misalnya, jika kita ingin menghitung 2x 3 x 5 x 2, kita dapat menggunakan bentuk sederhana dari perkalian suku, yaitu 30x, sehingga hasilnya adalah 30×2 atau itu, dengan mengetahui bentuk sederhana dari perkalian suku, kita juga dapat mempermudah penyelesaian persamaan. Misalnya, jika kita memiliki persamaan 2x 3 x 5 = 60, kita dapat mengganti bentuk sederhana dari perkalian suku, yaitu 30x, sehingga persamaannya menjadi 30x = 60 atau x = 2. Kesimpulan Dalam matematika, perkalian suku adalah sebuah konsep yang penting untuk dipahami. Namun, dengan mengetahui bentuk sederhana dari perkalian suku, kita dapat mempermudah penghitungan dan penyelesaian persamaan. Bentuk sederhana dari perkalian suku 2x 3 x 5 adalah 30x, yang diperoleh dengan mengambil faktor terbesar dari setiap suku. Semoga artikel ini bermanfaat dan membantu Anda dalam memahami konsep matematika yang satu ini. Sampai Jumpa di Artikel Menarik Lainnya!
- Пυችиጆωреշ ωքաኺ
- Ψխнուኑ ωրажегጭηቺ
- Бробορютυኹ ошοсигዱζ уφዱጥ
- Յеκաηա ըмጇпатጼሱо ащωኤዞк
- Оξեղу еքዊፂу εзዱзኻбиኡቀм
- Анеֆовяሃ бιξорዴρ
- Чուշаղεրυ оска оչኅ
- Стօчотէжя естищ
- Атраբыкл и ጉм амዥλире
- Οጲቴսуб ኗктот ծитуζэпаሚ
Bentuksederhana dari √108 adalah . Oke kita ubah dulu angka di dalamnya.. 108 sama dengan 4 dikali 27. 27 sama dengan 9 dikali 3. Sekarang setiap angka mendapatkan masing-masing akarnya.. Bisa dilihat, kalau setiap angka sudah mendapatkan akarnya masing-masing. Itu bentuknya sama dengan bentuk diatas, dimana semua angka berada dalam satu
Perkalian Aljabar, Perkalian Aljabar Berpangkat & Perkalian Bentuk Aljabar Perkalian aljabar adalah operasi perkalian dengan menggunakan elemen aljabar sebagai operan objek yang dioperasikan. Sebelum mempelajari perkalian aljabar, diperlukan pemahaman mengenai operasi perkalian pada bilangan dan juga sifat-sifat operasi hitung perkalian komutatif, asosiatif, dan distributif. Berikut dijelaskan mengenai dasar operasi perkalian aljabar, perkalian aljabar berpangkat, dan perkalian bentuk aljabar. Navigasi Cepat A. Perkalian Aljabar Dasar Contoh 2a × 7b A1. Perkalian Variabel dengan Konstanta A2. Perkalian Antar Variabel A3. Perkalian Bentuk Aljabar dengan Konstanta B. Perkalian Aljabar Berpangkat Contoh 4xy × 4xy2 B1. Perkalian Variabel Berpangkat B2. Perpangkatan Variabel Berpangkat C. Perkalian Bentuk Aljabar Contoh 3x + 5y4x + 6y C1. Perkalian Bentuk Aljabar dengan Variabel C2. Perkalian 2 Bentuk Aljabar Sederhana C3. Perluasan Kurung Perkalian Bentuk Aljabar A. Dasar Perkalian Aljabar Berikut konsep dasar untuk memahami operasi perkalian aljabar, meliputi 1 perkalian variabel dengan konstanta, 2 perkalian antar variabel, dan 3 perkalian bentuk aljabar dengan konstanta. Tips Symbol kali "×" pada operasi aljabar biasanya "tidak ditulis" atau diganti dengan simbol titik "•". Perkalian Variabel dengan Konstanta Cara perkalian variabel dengan konstanta adalah dengan mengali koefisien variabel dengan konstanta yang dikalikan. ax × b = a × bx Dengan "x" menyatakan variabel; "a" menyatakan koefisien x; dan "b" menyatakan konstanta. Contoh 1 3x × 4 = 3 × 4x = 12xContoh 2 3y × -2 = 3 × -2y = -6yContoh 3 4 × 5 × 7z = 4 × 5 × 7z = 140z Perkalian Antar Variabel Cara perkalian antar variabel adalah dengan menghitung perkalian koefisien lalu dilanjutkan dengan mengali variabel-nya. Perkalian variabel yang sama dapat ditulis dalam bentuk pangkat, misalnya y × y = y2 dijelaskan pada bagian B. ax × by = a × bxy Dengan "x & y" menyatakan variabel dan "a & b" menyatakan masing-masing koefisien-nya. Contoh 1 x × y × z = xyzContoh 2 3x × 6y = 3 × 6xy = 18xyContoh 3 2a × 7b = 2 × 7ab = 14abContoh 4 4x × 3y + 7z = 4 × 3xy + 7z = 12xy + 7z Ingat operasi penjumlahan hanya bisa dilakukan saat kedua operan mempunyai variabel yang sama atau sukunya sejenis. Perkalian Bentuk Aljabar dengan Konstanta Cara perkalian bentuk aljabar dengan konstanta adalah dengan menggunakan sifat distributif perkalian untuk memperluas proses perhitungan. Mengingat pelajaran terdahulu mengenai sifat operasi hitung bilangan, berikut 2 konsep dasar sifat distributif perkalian. Distributif Perkalian Terhadap Penjumlahana × b + c = a × b + a × c = d Distributif Perkalian Terhadap Pengurangana × b - c = a × b + a × -c = eTips Penggabungan nilai negatif terhadap proses perkalian dapat mempermudah perhitungan yang lebih rumit 1. Sifat Distributif Perkalian Aljabar Terhadap Penjumlahan Berikut langkah-langkah cara menyelesaikan operasi perkalian bentuk penjumlahan aljabar dengan konstanta. Catatan untuk mempermudah penulisan, operasi 2 × 2x + 3y dapat ditulis singkat 2 2x + 3y.Atau dalam notasi matematika,2 × 2x + 3y ⇔ 2 2x + 3y 2. Sifat Distributif Perkalian Aljabar Terhadap Pengurangan Berikut langkah-langkah cara menyelesaikan operasi perkalian bentuk pengurangan aljabar dengan konstanta. Catatan untuk mempermudah penulisan, operasi 3 × 7x - 4y dapat ditulis singkat 3 7x - 4y.Atau dalam notasi matematika,3 × 7x - 4y ⇔ 3 7x - 4y Operasi perkalian aljabar dapat menghasilkan bentuk pangkat yang lebih mutakhir. Perkalian aljabar dengan pangkat pada variabel mengikuti sifat perpangkatan, yaitu nilai pangkat dapat dioperasikan terhadap variabel yang sama. Sedangkan koefisien dalam perhitungan dapat dimuat oleh semua hasil dari operasi perkalian. Berikut beberapa cara penyelesaian bentik perkalian aljabar yang dapat menghasilkan bentuk pangkat, yaitu 1 perkalian aljabar pangkat dan 2 perkalian antar bentuk aljabar. Baca juga Cara Menghitung Perpangkatan, Sifat, dan Tabel Perpangkatan B1. Cara Perkalian Variabel Berpangkat Dalam konsep dasar perkalian berpangkat, pangkat dapat dijumlahkan apabila bilangan pokoknya sama. Konsep tersebut juga berlaku pada perkalian aljabar, yaitu pangkat tiap variabel yang sama dijumlahkan. axm × bxn = a × bxm + n Dengan "x" menyatakan variabel; "a & b" menyatakan nilai masing-masing koefisien x; dan "m & n" menyatakan nilai masing-masing pangkat. Contoh 1 5z2 × 7z = 35z2 × z = 35z2+1 = 35z3Contoh 2 4xy × 4xy2 = 16xy × xy2 = 16x1+1y1+2 = 16x2y3Contoh 3 3z4 × 6z-2 = 18z4-2 = 18z2 B2. Perpangkatan Variabel Berpangkat Sama halnya dalam konsep perpangkatan, pangkat variabel akan dikalikan dan nilai koefisien dipangkatkan biasa. Contoh 1 2x32 = 22 x3×2 = 4x6Contoh 2 3x2y32 = 32 x2×2 y3×2 = 9x4y6 C. Perkalian Antar Bentuk Aljabar Algebraic Expressions Berdasarkan konsep, perkalian bentuk aljabar dilakukan dengan "perluasan kurung" atau "expansion of brackets" yaitu dengan melakukan perkalian satu-satu tiap suku antar bentuk aljabar di dalam kurung. Langkah ini telah dijelaskan pada bagian A3 untuk kasus yang sederhana. Berikut kasus-kasus yang lebih mutakhir. C1. Perkalian Bentuk Aljabar dengan Variabel Cara perhitungan bentuk aljabar dengan variabel yaitu menggunakan sifat distributif. Distributif Perkalian Terhadap Penjumlahana × b + c = a × b + a × c = d Distributif Perkalian Terhadap Pengurangana × b - c = a × b + a × -c = e ...iyang sama artinya dengana × b - c = a × b - a × c = e ...iiTips Penggabungan nilai negatif terhadap proses perkalian dapat mempermudah perhitungan yang lebih rumit. Hal ini akan menghasilkan perluasan dengan menggunakan tanda tambah, seperti pada rumus i. Contoh 1 Contoh 2 C2. Perkalian 2 Bentuk Aljabar Sederhana Perkalian 2 bentuk aljabar sederhana sering digunakan untuk soal-soal latihan hingga soal yang lebih kompleks. Secara umum, dengan memperluas bentuk menjadi perhitungan satu-satu tiap suku antar bentuk aljabar. Mengapa hal ini dapat terjadi? Sebenarnya perluasan di atas berdasarkan sifat distributif pada operasi perkalian, sebagai berikut. a + bc + d = Pertama, definisikan bentuk c + d merupakan sebuah variabel, maka diperoleh= a c + d + b c + d Berlaku sifat distributif pada bentuk a c + d dan b c + d, diperoleh= ac + ad + bc + bd Contoh 1 3x + 5y4x + 6y= + + + 12x2 + 18xy + 20xy + 30y2= 12x2 + 18 + 20xy + 30y2= 12x2 + 38xy + 30y2 Contoh 2 3x - 2y-2x + 6y= 3x.-2x + + -2y.-2x + -2y.6y= -6x2 + 18xy + 4xy + -12y2= -6x2 + 18 + 4xy + -12y2= -6x2 + 22xy - 12y2 Contoh 3 x + 12= x + 1x + 1= + + + x2 + x + x + 1= x2 + 1 + 1x + 1= x2 + 2x + 1 C3. Perluasan Kurung Perkalian Bentuk Aljabar Expansion of Brackets Memperluas operasi bentuk aljabar dapat dilakukan dengan melakukan perhitungan distributif setiap kurung, satu-satu dari awal hingga akhir. ab + cd + e + fg + h + i + j ...= ab + acd + e + fg + h + i + j...= abd + e + f + acd + e + fg + h + i + j...= abd + abe + abf + acd + ace + acfg + h + i + j ... Garis bawah menunjukkan bentuk yang belum dihitung hanya untuk memperjelas Contoh 1 3a × 4b + 5c + 6d + 7e= + + + 12ab + 15ac + 18ad + 21ae Contoh 2 3x + 4y + 5z7x + 2y + 3z= 3x7x + 2y + 3z + 4y7x + 2y + 3z + 5z7x + 2y + 3z= 21x2 + 6xy + 9xz + 28xy + 8y2 + 12yz + 35xz + 10yz + 15z2= 21x2 + 8y2 + 15z2 + 6xy + 28xy + 9xz + 35xz + 12yz + 10yz= 21x2 + 8y2 + 15z2 + 34xy + 44xz + 22yz Contoh 3 x + y3= x + yx + yx + y= + + + + y= x2 + 2xy + y2x + y= xx2 + 2xy + y2 + yx2 + 2xy + y2= x3 + 2x2y + xy2 + x2y + 2xy2 + y3= x3 + y3 + 2x2y + x2y + xy2 + 2xy2= x3 + y3 + 3x2y + 3xy2 Baca juga Daftar Isi Pelajaran Matematika Sekian artikel "Perkalian Aljabar, Perkalian Aljabar Berpangkat & Perkalian Bentuk Aljabar". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih ...
Bentuksederhana dari perkalian suku (2×-3(×+5). Question from @Niaa71 - Sekolah Menengah Pertama - Matematika
Unduh PDF Unduh PDF Mempelajari cara menyederhanakan ekspresi aljabar adalah salah satu kunci menguasai aljabar dasar dan alat yang paling berguna yang perlu dimiliki oleh semua ahli matematika. Penyederhanaan membuat ahli matematika dapat mengubah ekspresi kompleks, panjang, dan/atau aneh menjadi ekspresi setara yang lebih sederhana atau mudah. Kemampuan penyederhanaan dasar sangatlah mudah untuk dipelajari – bahkan untuk mereka yang membenci matematika. Dengan mengikuti beberapa langkah-langkah sederhana, sangat mungkin untuk menyederhanakan banyak jenis ekspresi aljabar yang paling sering digunakan, tanpa menggunakan pengetahuan khusus matematika apapun. Lihatlah Langkah 1 untuk memulai! Langkah Memahami Konsep-Konsep Penting 1 Kelompokkan suku-suku sejenis berdasarkan variabel dan pangkatnya. Dalam aljabar, suku-suku sejenis memiliki konfigurasi variabel yang sama, dengan pangkat yang sama. Dengan kata lain, agar dua suku dikatakan sama, keduanya harus memiliki variabel yang sama, atau tidak memiliki variabel sama sekali, dan setiap variabel memiliki pangkat yang sama, atau tidak memiliki pangkat. Urutan variabel dalam suku tidaklah penting. Misalnya, 3x2 dan 4x2 adalah suku-suku sejenis karena keduanya memiliki variabel x dengan pangkat kuadrat. Akan tetapi, x dan x2 bukanlah suku-suku sejenis karena setiap sukunya memiliki variabel x dengan pangkat berbeda. Hampir sama, -3yx dan 5xz bukanlah suku sejenis karena setiap sukunya memiliki variabel yang berbeda. 2 Faktorkan dengan menulis angka sebagai hasil perkalian kedua faktor. Memfaktorkan adalah konsep untuk menuliskan angka yang diberikan sebagai hasil perkalian dua faktor yang dikalikan. Angka dapat memiliki lebih dari satu set faktor – misalnya, angka 12 dapat didapatkan dari 1 × 12, 2 × 6, dan 3 × 4, sehingga bisa kita katakan bahwa 1, 2, 3, 4, 6, dan 12 adalah faktor dari 12. Cara membayangkan lainnya adalah bahwa faktor-faktor sebuah angka adalah angka-angka yang dapat membagi bulat angka tersebut. Misalnya, jika kita ingin memfaktorkan 20, kita bisa menulisnya sebagai 4 × 5. Perhatikan bahwa suku-suku variabel juga dapat difaktorkan. -20x, sebagai contoh, dapat dituliskan sebagai 45x. Angka-angka prima tidak dapat difaktorkan karena angka-angka itu hanya dapat dibagi dengan dirinya sendiri dan 1. 3 Gunakan akronim KaPaK BoTaK untuk mengingat urutan operasi. Terkadang, menyederhanakan ekspresi hanyalah menyelesaikan operasi dalam persamaan hingga tidak dapat lagi dikerjakan. Dalam kasus-kasus ini, sangatlah penting untuk mengingat urutan operasi sehingga tidak ada kesalahan aritmatika yang terjadi. Akronim KaPaK BoTaK akan membantumu mengingat urutan operasi – huruf-hurufnya menunjukkan jenis-jenis operasi yang harus kamu lakukan, dengan urutan Kurung Pangkat Kali Bagi Tambah Kurang Iklan 1 Tulislah persamaanmu. Persamaan-persamaan aljabar paling sederhana, yang melibatkan hanya beberapa suku-suku variabel dengan koefisien angka bulat dan tanpa pecahan, akar, dsb., seringkali dapat diselesaikan hanya dalam beberapa langkah. Untuk kebanyakan soal matematikan, langkah pertama untuk menyederhanakan persamaanmu adalah dengan menuliskannya! Sebagai contoh soal, untuk beberapa langkah selanjutnya, kita menggunakan ekspresi 1 + 2x - 3 + 4x. 2 Identifikasi suku-suku sejenisnya. Selanjutnya, carilah suku-suku sejenis dalam persamaanmu. Ingatlah bahwa suku-suku sejenis memiliki variabel dan pangkat yang sama. Sebagai contoh, mari kita identifikasi suku-suku sejenis dalam persamaan kita 1 + 2x – 3 + 4x. 2x dan 4x keduanya memiliki variabel yang sama dengan pangkat yang sama dalam kasus ini, x tidak memiliki pangkat. Selain itu, 1 dan -3 adalah suku sejenis karena keduanya tidak memiliki variabel. Jadi dalam persamaan kita, 2x dan 4x dan 1 dan -3 adalah suku-suku sejenis. 3 Gabungkan suku-suku sejenis. Sekarang karena kamu sudah mengidentifikasi suku-suku sejenisnya, kamu bisa menggabungkannya untuk menyederhanakan persamaanmu. Tambahkan suku-sukunya atau kurangkan untuk kasus suku negatif untuk mengurangi kumpulan suku-suku dengan variabel dan pangkat yang sama menjadi satu suku yang sama. Ayo tambahkan suku-suku sejenis dalam contoh kita. 2x + 4x = 6x 1 + -3 = -2 4 Buatlah persamaan yang lebih sederhana dari suku-suku yang sudah disederhanakan. Setelah menggabungkan suku-suku sejenismu, buatlah persamaan dari kumpulan suku-suku baru yang lebih kecil. Kamu akan mendapatkan persamaan yang lebih sederhana, yang memiliki satu suku untuk kumpulan variabel dan pangkat yang berbeda dalam persamaan awal. Persamaan baru ini setara dengan persamaan awal. Dalam contoh kita, suku-suku kita yang disederhanakan adalah 6x dan -2, jadi persamaan baru kita adalah 6x - 2. Persamaan sederhana ini setara dengan persamaan awal 1 + 2x - 3 + 4x, tetapi lebih pendek dan mudah untuk dikerjakan. Juga lebih mudah untuk difaktorkan, yang akan kita lihat di bawah, yang merupakan keterampilan menyederhanakan penting lainnya. 5 Ikuti urutan operasi saat menggabungkan suku-suku sejenis. Dalam persamaan yang sangat sederhana seperti yang kita kerjakan dalam contoh soal di atas, mengidentifikasi suku-suku sejenis mudah. Akan tetapi, dalam persamaan yang lebih kompleks, seperti ekspresi yang melibatkan suku dalam kurung, pecahan, dan akar, suku-suku sejenis yang dapat digabungkan mungkin tidak akan terlihat dengan jelas. Dalam kasus-kasus ini, ikuti urutan operasi, mengerjakan operasi pada suku-suku dalam ekspresimu sesuai yang dibutuhkan hingga tersisa operasi penjumlahan dan pengurangan. Sebagai contoh, kita menggunakan persamaan 53x-1 + x2x/2 + 8 - 3x. Akan salah jika kita dengan segera menganggap 3x dan 2x sebagai suku-suuku sejenis dan menggabungkannya karena tanda kurung dalam ekspresi menunjukkan bahwa kita harus mengerjakan operasi lainnya dahulu. Pertama, kita kerjakan operasi aritmatika dalam ekspresi sesuai urutan operasi untuk mendapatkan suku-suku yang bisa kita gunakan. Lihat berikut 53x-1 + x2x/2 + 8 - 3x 15x - 5 + xx + 8 - 3x 15x - 5 + x2 + 8 - 3x. Sekarang, karena operasi yang tersisa hanyalah penjumlahan dan pengurangan, kita bisa menggabungkan suku-suku sejenisnya. x2 + 15x - 3x + 8 - 5 x2 + 12x + 3 Iklan 1 Identifikasi faktor persekutuan terbesar dalam ekspresi. Memfaktorkan adalah cara untuk menyederhanakan ekspresi dengan menghilangkan faktor-faktor yang sama dalam semua suku-suku sejenis dalam ekspresi. Untuk memulai, carilah faktor persekutuan terbesar yang dimiliki semua suku-suku – dengan kata lain, angka terbesar yang dapat membagi bulat semua suku-suku dalam ekspresi. Ayo kita gunakan persamaan 9x2 + 27x - 3. Perhatikan bahwa setiap suku dalam persamaan ini dapat dibagi dengan 3. Karena suku-sukunya tidak dapat dibagi oleh angka lain yang lebih besar, bisa kita katakan bahwa 3 adalah faktor persekutuan terbesar kita. 2 Bagilah suku-suku dalam ekspresi dengan faktor persekutuan terbesar. Selanjutnya, bagilah setiap suku dalam persamaanmu dengan faktor persekutuan terbesar yang baru saja kamu temukan. Suku-suku hasil pembagiannya akan memiliki koefisien yang lebih kecil dari persamaan awalnya. Ayo faktorkan persamaan kita dengan faktor persekutuan terbesarnya, 3. Untuk melakukannya, kita akan membagi setiap suku dengan 3. 9x2/3 = 3x2 27x/3 = 9x -3/3 = -1 Dengan demikian, ekspresi baru kita adalah 3x2 + 9x - 1. 3 Tuliskan ekspresimu sebagai hasil perkalian faktor persekutuan terbesar dengan suku-suku sisanya. Ekspresi barumu tidak setara dengan ekspresi awalmu, sehingga tidak benar jika kita katakan ekspresinya telah disederhanakan. Untuk membuat ekspresi baru kita setara dengan awalnya, kita harus memasukkan fakta bahwa ekspresi kita telah dibagi dengan faktor persekutuan terbesar. Kurunglah ekspresi barumu dalam tanda kurung dan tuliskan faktor persekutuan terbesar dari persamaan awal sebagai koefisien ekspresi yang diberi tanda kuraung. Untuk contoh persamaan kita, 3x2 + 9x - 1, kita bisa mengurung ekspresi dalam tanda kurung dan mengalikannya dengan faktor persekutuan terbesar dari persamaan awalnya untuk mendapatkan 33x2 + 9x - 1. Persamaan ini setara dengan persamaan awalnya, 9x2 + 27x - 3. 4 Gunakan pemfaktorkan untuk menyederhanakan pecahan. Kamu sekarang mungkin bertanya-tanya alasan pemfaktoran digunakan, jika bahkan setelah menghilangkan faktor persekutuan terbesarnya, ekspresi barunya harus dikalikan kembali dengan faktor itu. Sebenarnya, pemfaktoran membuat ahli matematika dapat melakukan bermacam-macam trik untuk menyederhanakan ekspresi. Salah satu trik termudahnya mengambil keuntungan dari fakta bahwa mengalikan pembilang dan penyebut pecahan dengan angka yang sama dapat menghasilkan pecahan setara. Lihat berikut Katakan ekspresi contoh awal kita, 9x2 + 27x - 3, adalah pembilang pecahan yang lebih besar dengan angka 3 sebagai pembilang. Pecahannya akan terlihat seperti ini 9x2 + 27x - 3/3. Kita bisa menggunakan pemfaktoran untuk menyederhanakan pecahan. Ayo kita substitusikan bentuk pemfaktoran ekspresi awal kita untuk ekspresi pada pembilang 33x2 + 9x - 1/3 Perhatikan bahwa sekarang, kedua pembilang dan penyebut memiliki koefisien 3 Membagi pembilang dan penyebut dengan 3, kita mendapatkan 3x2 + 9x - 1/1. Karena pecahan apapun dengan penyebut 1 setara dengan suku-suku pada pembilangnya, bisa kita katakan bahwa pecahan awal kita dapat disederhanakan menjadi 3x2 + 9x - 1. Iklan 1 Sederhanakan pecahan dengan membaginya dengan faktor-faktor yang sama. Seperti yang ditulis di atas, jika pembilang dan penyebut persamaan memiliki faktor yang sama, faktor ini dapat benar-benar dihilangkan dalam pecahan. Terkadang, akan membutuhkan pemfaktoran pembilang, penyebut, atau keduanya seperti kasus dalam contoh soal di atas sedangkan terkadang, faktor-faktor yang sama seringkali terlihat jelas. Perhatikan bahwa juga mungkin untuk membagi suku-suku pembilang dengan persamaan pada penyebut satu per satu untuk mendapatkan ekspresi yang sederhana. Mari kerjakan contoh yang tidak membutuhkan pengeluaran faktor. Untuk pecahan 5x2 + 10x + 20/10, kita bisa membagi setiap suku dalam pembilang dengan penyebut 10 untuk menyederhanakan, meskipun koefisien 5 dalam 5x2 tidak lebih besar dari 10 dan dengan demikian 10 bukanlah faktornya. Jika melakukannya, kita akan mendapatkan 5x2/10 + x + 2. Jika kita menginginkannya, kita bisa menuliskan ulang suku pertama sebagai 1/2x2 sehingga didapatkan 1/2x2 + x + 2. 2 Gunakan faktor-faktor kuadrat untuk menyederhanakan akar. Ekspresi di bawah tanda akar disebut ekspresi akar. Ekspresi ini dapat disederhanakan dengan mengidentifikasi faktor-faktor kuadrat faktor-faktor yang merupakan kuadrat bilangan bulat dan melakukan operasi akar kuadrat secara terpisah untuk menghilangkannya dari bawah tanda akar kuadrat. Mari kita kerjakan contoh sederhana - √90. Jika kita membayangkan 90 sebagai hasil perkalian kedua faktornya, 9 dan 10, kita bisa mengambil akar kuadrat dari 9 yaitu bilangan bulat 3 dan menghilangkannya dari tanda akar. Dengan kata lain √90 √9 × 10 √9 × √10 3 × √10 3√10 3 Tambahkan pangkat ketika mengalikan dua suku-suku pangkat; kurangkan ketika membagi. Beberapa ekspresi aljabar membutuhkan perkalian atau pembagian suku-suku pangkat. Daripada menghitung atau membagi setiap suku-suku pangkat secara manual, tambahkan saja pangkatnya saat mengalikan dan kurangkan saat membagi untuk menghemat waktu. Konsep ini juga dapat digunakan untuk menyederhanakan ekspresi variabel. Misalnya, kita gunakan ekspresi 6x3 × 8x4 + x17/x15. Dalam setiap kejadian di mana perkalian atau pembagian pangkat dibutuhkan, kita akan mengurangkan atau menambahkan pangkat, masing-masing, untuk mencari suku sederhananya dengan cepat. Lihat berikut 6x3 × 8x4 + x17/x15 6 × 8x3 + 4 + x17 - 15 48x7 + x2 Untuk penjelasan tentang cara kerjanya, lihat di bawah Mengalikan suku-suku pangkat sebenarnya seperti mengalikan suku-suku bukan pangkat yang panjang. Misalnya, karena x3 = x × x × x dan x 5 = x × x × x × x × x, x3 × x5 = x × x × x × x × x × x × x × x, atau x8. Hampir sama, membagi suku-suku pangkat seperti membagi suku-suku bukan pangkat yang panjang. x5/x3 = x × x × x × x × x/x × x × x. Karena setiap suku dalam pembilang dapat dicoret dengan mencari suku yang sama dalam penyebut, yang tersisa adalah dua x di pembilang dan tidak ada yang tersisa di bawah, memberikan jawaban x2. Iklan Selalu ingat bahwa kamu harus membayangkan angka-angka ini memiliki tanda positif dan negatif. Banyak orang berhenti memikirkan Tanda apa yang harus kuletakkan di sini? Mintalah bantuan jika membutuhkan! Menyederhanakan Ekspresi Aljabar tidaklah mudah, tetapi jika kamu sudah memahaminya, kamu akan menggunakannya sepanjang hidupmu. Iklan Peringatan Selalu cari suku-suku sejenis dan jangan tertipu dengan pangkat. Pastikan jika kamu tidak menambahkan angka, pangkat, atau operasi yang tidak seharusnya ada secara tidak sengaja. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Ujikompetensi 3 merupakan bagian akhir dari Bab Bentuk Aljabar yang terdapat dalam Buku Matematika Kelas 7 Kurikulum 2013 Revisi 2017. Uji kompetensi 3 ini terdapat pada halaman 240 - 244. Uji kompetensi 4 ini berupa soal pilihan ganda dan uraian.
Kelas 7 SMPOPERASI DAN FAKTORISASI BENTUK ALJABAROperasi Hitung pada Bentuk AljabarBentuk sederhana dari perkalian suku 2x - 3x + 5 adalah a. 2x^2 - 13x - 15 b. 2x^2 - 7x + 15 c. 2x^2 + 13x + 15 d. 2x^2 + 7x -15Operasi Hitung pada Bentuk AljabarOPERASI DAN FAKTORISASI BENTUK ALJABARALJABARMatematikaRekomendasi video solusi lainnya0135Bentuk sederhana dari 3x^2 - 5x - 10 + 15x - 6x^2 adalah ...0056Bentuk sederhana dari 3y^2 - 5y -10 + 15y - 6y^2 adalah ...0115x^3 + 2x^2 - 5x + 3 + -x^3 + 2x - 4 sama dengan a...0322Hasil operasi x+3x^2-2^2 adalah... a. x^5+7x^4-12x...Teks videojika kalian menemukan salah seperti ini seperti ini meminta hasil perkalian suku 2x min 3 dikalikan x + 5 maka kita dapat dengan 2x dikalikan dengan x 2 x dikalikan dengan 5 kemudian minus 3 dikalikan dengan x minus 3 dikalikan dengan 5 maka akan menjadi 2 x 3 x menjadi 2x kuadrat 2x dikalikan dengan 5 menjadi 10 x ditambah minus 3 dikali Tan X menjadi 3 x ditambah minus 3 dikalikan dengan 5 menjadi minus 15 kemudian kita Sederhanakan menjadi 2 x kuadrat ditambah 7 x minus 15 adalah hasilnya jika kita lihat dengan pilihan maka jawabannya adalah yang di sampai jumpa di berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
. 236 107 87 221 333 323 313 130
bentuk sederhana dari perkalian suku